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Abstract

The conditions under which an adhesively bonded weak zone (with continuously distributed adhesive forces) at the

interface between two dissimilar elastic half planes can become the nucleus of a crack are derived. The problem is ®rst

reduced to a traction-free weak zone at the interface between two dissimilar elastic half planes, subjected remotely to an

inhomogeneous stress ®eld. This reduction procedure allows the general solution to be obtained in ordinary functions

without the usual Cauchy integrals. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Gri�th/Irwin linear elastic fracture mechanics for ideal brittle materials is based on the model of a
crack as a cut with traction-free faces. If the cut contains small zones near its tips, where cohesive forces act
against the applied tensile forces and reduce their opening, then the mechanics of quasi-brittle materials is
normally used (Barenblatt, 1959; Leonov and Panasyuk, 1959; Dugdale, 1960). The length of the cohesive
zone, `� is much smaller than that of the crack itself, `0. There have been many recent advances in the
application of the cohesive crack models to quasi-brittle materials, such as concrete, and rocks, in which the
size of the cohesive zone can be commensurate with that of the crack (Hillerborg et al., 1976; Karihaloo and
Nallathambi, 1990; Planas and Elices, 1992; Planas et al., 1995). A cohesive crack is one, in which a part of
the crack near its centre is traction free and a part near the tips is acted upon by cohesive/adhesive forces.

The limiting situation, when the faces of the whole crack are acted upon by adhesive/cohesive forces may
be regarded as a weak zone which is normally closed, but can open progressively under su�ciently large
external tensile forces. It is this limiting situation, which is the topic of the present study. We are interested
in establishing conditions (criteria) under which an adhesively bonded weak zone at the interface between
two dissimilar elastic half planes will form the nucleus of a potential cohesive crack.
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The weak zone and the corresponding adhesive/cohesive forces can be of a very di�erent physical origin
± atomic, dislocational, localised porosity, entrapped dirt or air during production, etc. (see e.g. Planas
et al., 1995). Healed cracks in glaciers, and in EarthÕs crust are also weak zones. The size of the weak zone
can thus range from a few micrometres to several kilometres. Notwithstanding the size and physical origin,
it is interesting to investigate the general behaviour of interfacial weak zones in much the same manner as
has been done for cohesive cracks (Hillerborg et al., 1976; Planas and Elices, 1992; Planas et al., 1993;
Smith, 1994; Karihaloo, 1995, 1997). For the latter, the cohesive force (in the cohesive zone), crack opening
displacement relationships have been established subject to a series of physical constraints, such as the
smooth closure of cohesive zone tips.

In this article, we shall consider an adhesively bonded weak zone at the interface between two dissimilar
elastic half planes under a constant remote tensile stress ®eld. Without going into the details of the physical
origin of the cohesive/adhesive forces, it is assumed that they are distributed continuously over the entire
extent of the zone and can be expressed in a polynomial series containing N terms. The problem is ®rst
reduced to an equivalent problem of a weak zone with traction-free faces, using the superposition method
proposed by Simonov (1990). The traction-free weak zone in the equivalent problem is situated at the
interface between two dissimilar elastic half planes which are now subjected remotely to an inhomogeneous
stress ®eld. The superposition method allows us to obtain the solution in ordinary functions and to avoid
the usual Cauchy integrals. The general solution contains N free parameters which are ®xed by imposing
physically consistent constraints on the solution. In this manner, the conditions (criteria) for a pre-existing
adhesively-bonded interfacial weak zone to form the nucleus of a potential cohesive crack are identi®ed.
Depending on the length of the weak zone, its transition to a percursor crack state can be stable or unstable,
as well as being accompanied by a sudden release of energy.

2. Statement of the problem

Consider a weak zone, x 2 �ÿ1; 1�, along the interface y� 0 between two dissimilar elastic half planes
subjected to a homogeneous tensile stress ®eld r1 > 0 at in®nity (Fig. 1). Assume that the faces of the weak
zone are subjected to as yet unknown adhesive/cohesive stresses which can be expanded in a series sym-
metrical about the x-axis

rc�x� � r� �
XN

n�1

rnx2n; jxj < 1: �1�

Assume further that up to r1 6 rth, where rth P 0 is the threshold stress, the faces of the weak zones are
closed, i.e. the half planes are just under the applied homogeneous stress ®eld. When the external remote
tensile stress is in the range rth < r1 < rcr, the faces of the weak zone move apart and a continuous ad-
hesive/cohesive compressive force (1) acts between them to counteract the external force in such a way that
the tips of the faces �x � �1� close smoothly. This state of the weak zone which forms the nucleus of a
potential crack shall be called the precursor state. When r1 � rcr; the adhesive force at the centre of the
weak zone vanishes. The corresponding distance by which the faces have moved apart at the centre is
denoted by wcr. Depending on the half length of the weak zone `0 (assumed here equal to unity), di�erent
scenarios are possible until an autonomous regime for the adhesive forces is established in the near-tip
zones. We shall focus our attention on the analysis of the precursor state based on general physical con-
siderations. We mention en passant that the assumption of a smooth crack closure is normally not made in
the ceramics community who allow the material ahead of the cohesive zone to be in®nitely strong in
tension. The real materials, including the ceramics, have a ®nite tensile strength consistent with the as-
sumption made here. Moreover, it is implied that rcr is less than the interfacial tensile strength, so that it is
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not possible for new weak zones to emerge along the interface before the weak zone under consideration
opens to become a precursor crack.

The elastic ®elds in the two half planes can be expressed through the complex vector function v � �v1; v2�
(Simonov, 1985, 1990) which is related to the well-known Kolosov±Muskhelishvili complex potentials /
and w via

v1�z� � z/0�z� � w�z�;
v2�z� � 2/�z� � v1�z�;

�2�

where z � x� iy, with i � �������ÿ1
p

. The complex functions vj �j � 1; 2� are very convenient for solving plane
interface problems due to their simple continuation property throughout the interface

vj�z� � �ÿ1�jvj�z� �3�
and their relationship to the stress rij and displacement ui ®elds along the interface (y� 0):

s � r12 � Imv1;

r � r22 � Rev2;

u;x� u1;x � ÿRe�bjv1 � ajv2�;
v;x � u2;x � Im�ajv1 � bjv2�:

�4�

Here,

4ljaj � 1ÿ jj; 4ljbj � 1� jj; �5�

Fig. 1. A weak zone at the interface between two dissimilar isotropic half planes under a homogeneous remote tensile stress r1. The

weak zone is bonded by a continuous distribution of adhesive stresses rc(x).
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where lj are the shear moduli, jj � 3ÿ 4mj for plane strain, jj � �3ÿ mj�=�1� mj� for generalised plane
stress state, and mj are PoissonÕs ratios of the two media (j � 1,2). The vector function v can be continuously
extended almost everywhere on the x-axis from above and below, and y dv=dz! 0, when y ! 0�.

The boundary value problem for the interface reduces to the Riemann±Hilbert problem of ®nding a
complex vector function v(z) which satis®es the following boundary conditions on the interface y� 0�

Im�Dv�j0� � g�x�; �6�
where D is a piecewise constant matrix which will be de®ned later. At the points of discontinuity in the
matrix D, say zk; k � 1; 2; . . ., and at z!1, the vector function v(z) behaves as

jvj < const

jzÿ zkj1=2
: �7�

When r1 6 rth, the constant stress ®eld in the plane is given by v11 � br1, v12 � r1 according to Eq. (4),
where b � �a2 ÿ a1�=�b1 � b2� is the Dundurs mixed parameter. Without loss of generality, we will restrict
our attention to 0 6 b 6 0:5 in the sequel. Note that an interchange in the two half planes results in the
reversal of the sign of b.

The boundary-value problem (6) and (7) involving inhomogeneous conditions along the interfacial weak
zone is inconvenient to handle mathematically. For this reason, we shall reduce it to an equivalent problem
with a traction-free interfacial weak zone subjected to an inhomogeneous stress ®eld at in®nity, using the
method proposed by Simonov (1990), namely at y� 0�

r � s � 0; jxj < 1;

�u;x� � �v;x� � 0; jxj > 1;Z 1

ÿ1

��u;x�; �v;x��dx � 0:

�8�

The above homogeneous boundary conditions on the interface lead to the following homogeneous
conditions in terms of the complex vector function v(z):

Im�Dv�j0� � 0 �9�
with

D � ÿb 1

i ÿib

� �
; jxj > 1;

D � 1 0

0 i

� �
; jxj < 1:

�10�

The complex vector function v�z� in Eq. (9) is, of course, further subjected to the limit conditions (7) as
zk ! �1 (i.e. x! �1) and the following inhomogeneous stress ®eld at in®nity (symmetric with respect to
x� 0):

v � br0

r0

� �
ÿ
XN

n�1

brn

rn

� �
z2n �O�zÿ2�; z!1; �11�

where r0 � r1 ÿ r� P 0:
A general discussion of the stress ®eld representation (11) for a piecewise elastic plane is given by

Simonov (1990), but we note here that the summation term in Eq. (11) is the solution for two elastic half
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planes without a weak zone along the interface. The perturbation induced by the interfacial weak zone is
given by the term outside the summation sign. The stress ®eld (11) can be decomposed into two parts

v � v1 ÿ v�; �12�
where

v� � r�
b
1

� �
�
XN

n�1

b
1

� �
rnz2n �O�zÿ2�; z!1; �13�

v1 determines the ®eld due to the external loading at in®nity and v�, the perturbation due to the adhesive/
cohesive stresses (1) between the faces of the interfacial weak zone. The advantage of the procedure fol-
lowed above is that we shall be able to avoid Cauchy integrals and obtain the solution in terms of ordinary
functions.

As mentioned in Section 1, the cohesive stresses (1) and the distance w by which the faces of the weak
zone move apart, when rth < r1 < rcr, have to be subjected to physically consistent additional require-
ments in order to determine rn in Eq. (1) or Eq. (13). We require rc�x� of Eq. (1) and w�x� to be positive.
Moreover, we require the faces of the weak zone to close smoothly near the tips to avoid stress singularities
there, i.e. w0�x�jx��1 � 0. Depending upon the number of terms N in the summation (1) or Eq. (13), we may
further require the curvature also to vanish near x � �1; i.e. w00�x�jx��1 � 0: In other words,

rc�x�P 0; w�x�P 0; jxj < 1;

w�x� � �1ÿ x2�3=2
; jxj ! 1�:

�14�

The question arises as to whether we can justify the above requirements concerning the smooth closure,
given that these would appear to contradict the expected solution for an interfacial crack which contains
oscillatory singular terms near the tips. The works of Comninou and others (Comninou, 1977; Simonov,
1985, 1992) however show that the size of the overlapping zone due to oscillatory singularities is very small,
less than one hundredth of the crack length, if the ratio r1=s1 > 1, where s1 is the applied shear stress at
in®nity. Moreover, they show that the ratio of the shear to normal displacements is

u
v
� s1

r1
� tan a ln

1� x
1ÿ x

� �� �
; �15�

where

a � ln k
2p

; k � 1� b
1ÿ b

: �16�

For 0 6 b 6 0:5; k 6 3; so that a ranges over 0 6 a < 0:175: Consequently, if s1 � r1, the ratio (15) is
very small, practically over the entire length of the weak zone, excluding negligibly small near-tip zones.
Thus, the shear displacement jump, �u;x� in Eq. (8) can be neglected, when only the normal cohesive forces in
the weak zone are considered.

3. General solution

We introduce two piecewise holomorphic functions Wk�z� and write

vj � W1 ÿ �ÿ1�jW2: �17�
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Substitution of Eq. (17) into Eqs. (9) and (11), uncouples W1 and W2 which can then be written as:

W1�z� � E�z�
2
������������
z2 ÿ 1
p 1ÿ z

1� z

� �ia

; W2�z� � W1�z�; �18�

where

E�z� � �1ÿ b2�1=2
X2N�1

n�0

Enzn: �19�

The cuts to single out branches of multi-valued functions �1� z�ia; �1ÿ z�ia and �z2 ÿ 1�1=2
are x P 1 and

x 6 ÿ1, and the equalities arg�1ÿ x�� � �p; arg�1� x�� � �p at the upper and lower surfaces of the cuts
®x these branches, so that

�x2
h
ÿ 1�1=2

i�
� �sgn x

�������������
x2 ÿ 1
p

; jxj > 1;

�x2
h
ÿ 1�1=2

i�
� i

�������������
1ÿ x2
p

; jxj < 1:

�20�

The coe�cients En in Eq. (19) are determined from the inhomogeneous stress ®eld at in®nity (11), after
expanding the binomials �1� zÿ1�ia and �1ÿ zÿ2�1=2

in Laurent series using the formula

�1� q�a �
X1
k�0

��1�kCa
k qk; �21�

where

Ca
0 � 1;

Ca
k �

a�aÿ 1� � � � �aÿ k � 1�
k!

; k > 0:
�22�

The ®nal result is

Ek �
XN

j�0

rjej

X
�ÿ1�nC1=2ÿia

n C2ia
m ; k � 0; 1; . . . ; 2N � 1; �23�

where

ej � 1; j � 0;

ej � ÿ1; j P 1:
�24�

The inner summation is subjected to the following restrictions:

m� 2n � 1� 2jÿ k;

m � 0; 1; . . . ; 2N � 1;

n � 0; 1; . . . ;N :
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In particular, for N� 2,

E0 � 2ia r0

�
� 1� 4a2

6
r1 � 1

15

11

8

�
� 5a2 ÿ 2a4

�
r2

�
� A1r0 ÿ �A1B1 � A3B0�r1 ÿ �A1B2 � A3B1 � A5B0�r2;

E1 � r0 � �12� 2a2�r1 � �18� 1
3
a2 ÿ 2

3
a4�r2

� r0 ÿ �A0B1 ÿ A2B0�r1 ÿ �A0B2 � A2B1 � A4B0�r2;

E2 � 2ia
�ÿ r1 � 1

6

ÿ � 2
3
a2
�
r2

�
� ÿA1r1 ÿ �A1B1 � A3B0�r2;

E3 � ÿr1 � 1� 4a2

2
r2

� ÿr1 ÿ �A0B1 � A2B0�r2;

E4 � ÿ2iar2 � ÿA1r2;

E5 � ÿr2;

�25�

where

Aj � C2ia
j ; Bn � C1=2ÿia

n �ÿ1�n: �26�
For later use, the expression for the vertical separation of the faces of the weak zone (i.e. the vertical
displacement discontinuity) is derived here

w�x0� �
Z x0

1

�v;x�dx � b
Z x0

1

Imfv2�x� ÿ bv1gdx; jx0j < 1; �27�

where b � b1 � b2, as

v1 � 2ReW1; v2 � 2i ImW1; jxj < 1; �28�
Eq. (27) can be written as

w�x0� � 2b
Z x0

1

ImW1�x�dx

� b�1ÿ b2�1=2

Z 1

x0

E��x� sin f �x� � E���x� cos f �x��������������
1ÿ x2
p dx; �29�

where

f �x� � ln
1� x
1ÿ x

� �a

; E� �
XN

n�0

E2n�1x2n�1; E�� �
XN

n�0

E2nx2n: �30�

3.1. Two indistinguishable half planes

We now consider the simple case when the mixed Dundurs parameter b � 0: By de®nition (16), a also
vanishes. The situation b � a � 0 covers both a homogeneous plane with a central weak zone and two
dissimilar but indistinguishable half planes with an interfacial weak zone. The latter follows from the fact
that b � 0 only means a1� a2. The two half planes can still have di�erent values of bj. In the simple case
under consideration, solution (18)±(30) is rendered symmetric about the y-axis and is considerably sim-
pli®ed
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v1 � 0; v2 � v � W1 ÿ W2;

W1�z� � P�z�
2
������������
z2 ÿ 1
p ; W2�z� � W1�z�;

P �z� �
XN

0

Pnz2n�1;

Pn �
XN

j�0

rj

X
k�jÿn

�ÿ1�kC1=2
k ;

�31�

rc�x� � r� �
XN

1

rnx2n;

w�x� � b
Z 1

x

P �y��������������
1ÿ y2

p dy; jxj < 1:

The integral in Eq. (31) is evaluated for each integer value of n � 0; 1; . . . ;N . Let us consider several values
of N.

3.1.1. N� 0
In this case, Eq. (1) reduces to

rc�x� � r� � const: �32�
This case is similar to the Dugdale±Leonov±Panasyuk model of a cohesive crack. The requirement that

the faces of the weak zone close smoothly near the tips, demands that the principal mode I stress intensity
factor KI vanish at each tip, i.e.

KI �
XN

0

Pn � 0; �33�

whence it follows that P0 � r0 � 0: The solution for this special case is therefore the trivial one

r0 � 0; rc � r1; w � 0: �34�
That is, the weak zone will never open and become the nucleus of a potential crack, irrespective of the
magnitude of the remote tensile stress r1: We note again that the situation would be di�erent if the material
ahead of the weak zone had in®nite tensile strength so that KI > 0.

3.1.2. N� 1
In this case, condition (33), together with the de®nition of Pn (31), namely P0 � r0 � 1

2
r1; P1 � ÿr1; gives

r1 � 2r0: The corresponding cohesive force distribution over the weak zone and the relative vertical sep-
aration of its faces are

rc � r1 � r0�1ÿ 2t�; t � 1ÿ x2;

w�t� � 2
3
br0t

3=2

; 0 6 t 6 1:
�35�

The ®rst of the requirements (14) leads to the inequalities

0 < r0 6 r1; rth 6 r1 6 rcr �36�
with all other conditions being identically satis®ed. Thus, the solution is a one-parameter representation of
the weak zone as a percursive crack, with the free parameter r0 which is subjected to the conditions (36).
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When r0 6 rth, the solution for N� 1 coincides with that of N� 0 (34), as it should. When r1 reaches
the upper bound rcr, inequality (36) gives

r0 � r1 � rcr: �37�
Let us denote the maximum vertical separation of the weak zone faces (at x� 0, i.e. t� 1) by wcr corre-
sponding to r0� rcr (37) and substitute it into the second of the two relations (35), and so giving

rcr � 3
2

wcr

b
: �38�

This critical value of the vertical separation (assumed to be a material constant) corresponds to the onset of
the formation of a crack. At this instant, the distributions (35) are completely de®ned through wcr or rcr

(Fig. 2(a))

rc�x� � 2rcrx2; w�x� � wcr�1ÿ x2�3=2

: �39�
However, when rth < r1 < rcr in (36), r0 cannot be expressed in terms of r1. It is now necessary to
measure r0 � r1 ÿ r� experimentally, which may not be an easy task, especially if the physical source is at
the microscopic level. However, we can still follow its evolution with r1 in accordance with its limiting
values given by (34) and (37). Let us assume r0(r1) is a power law

r0�r1� � rcr

r1 ÿ rth

rcr ÿ rth

� �c

; �40�

where

c > 1; rth � 0;

c P 1; rth > 0:
�41�

Then the evolution of the cohesive force rc(x) takes place as follows.
For r1 6 rth, rc� r1 � const (32). With an increase in r1, rc increases gradually, reaching its maximum

value 2rcr when r1 reaches rcr. Thereafter, it decreases gradually to zero according to the parabolic law
(39). The parabolic distribution of rc(x) (35) shows that rc(x) experiences a strong monotonic increase from
x� 0 to x� 1 at each value of r1 in the range rth 6 r1 6 rcr. As to w(x) (35), it satis®es the requirement of
smooth closure w0��1� � 0, but at these locations the curvature is unbounded w00��1� � 1. Note that
elimination of x from Eq. (39) gives the constitutive law for the weak interfacial zone.

Fig. 2. The shape of the weak zone w(x) under the adhesive stresses rc(x) when (a) N� 1, (b) N� 2. The weak zone is located on the

interface between two indistinguishable half planes, i.e. b� a� 0, but b1 6� b2.
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3.1.3. N� 2
If we wish to impose the condition that the curvature also vanishes at the weak zone tips, then we must

include an additional term in the polynomial series (1). From Eq. (31), it then follows that

P0 � ÿr0 ÿ 1
2
r1 ÿ 1

8
r2; P1 � r1 ÿ 1

2
r2; P2 � r2: �42�

The conditions

w0�1� � 0; w00�1� � 0

lead toX2

0

Pn � 0;
X2

0

�2n� 1�Pn � 0: �43�

From Eqs. (42) and (43), it follows that

r1 � 4r0; r2 � ÿ8
3
r0: �44�

The corresponding distributions of rc(x) and w(x) (31) are

rc�x� � r1 � r0 4x2
ÿ ÿ 1ÿ 8

3
x4
�
;

w�x� � 8
15

br0�1ÿ x2�5=2
:

�45�

The counterpart of Eq. (38) is

rcr � 15

8

wcr

b
: �46�

We can now follow the same line of reasoning as above for N� 1. The distributions (45) and (46) again
contain just one free parameter r0, which may be estimated, as above (39). At the limit r1 � rcr, both
distributions are again completely de®ned in terms of wcr (or rcr vide 46)

rc�x� � 4rcrx2 1
ÿ ÿ 2

3
x2
�
;

w�x� � wcr�1ÿ x2�5=2
:

�47�

Although the faces of the weak zone close smoothly near the tips, the distribution of the cohesive stress is
no longer a monotonically decreasing function in the range 0 6 jxj 6 1. It now increases with x in the range
0 < jxj < xm �

���
3
p

=2, reaches its maximum value rc�xm� � 3
2
rcr at x � xm, and then decreases slightly up to

the value rc � 4
3
rcr at x � 1 (Fig. 2(b)).

Again, the elimination of x from Eq. (47) gives the corresponding constitutive law relating the adhesive
stress to the displacement jump.

3.2. Two dissimilar half planes

We now consider the general case when b > 0; a > 0 in the ranges

0 6 b 6 0:5; 0 < a < 0:175: �48�
As a2 is small �0 < a2 < 0:03�; we shall neglect terms of O�a3� or even O�a2�; if the latter does not contain a
factor which is large compared with unity. We again give a step-by-step analysis of the two cases N� 1, 2.
The case N� 0 is identical to that considered above when b � 0 (Section 3.1.1). But ®rst let us examine the
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near-tip stress ®elds closely. Note that the sum in Eq. (23) can be expanded into real and imaginary sets of
En as follows:

E2n � iE02n; E2n�1 � ReE2n�1; n � 0; 1; . . . ;N : �49�
In fact, this expansion was used in the derivation of coe�cients (25). It is easily veri®ed that

E02n � O�a�; E2n�1 � O�1�; a! 0: �50�
The functions Wj; vj and, consequently, the stress and strain near-tip ®elds possess an oscillatory singularity
of the type

W1 � BZÿ1=2�ia; Z ! 0; Z � zÿ 1

2
; �51�

where

B � 1=4k
1=2

E�1� � 1

4
k1=2
XN

n�0

�E2n�1 � iE02n� � B1 � iB2a; B1;B2 � O�1�; as a! 0: �52�

In contrast to the case when b � 0 (and a � 0), the SIF is now a complex one containing both the principal
KI and the secondary KII components. Even when the solution of the near-tip stress ®elds is corrected by the
method of asymptotic matching (Simonov, 1990) to account for overlapping near-tip zones of length `� so
that the oscillatory singularity is replaced by a square-root one with SIF, KII, the stress ®elds are

KII � ÿ
������������������������
8p=�1ÿ b2�

q
jBj;

s � KII��������������������
2p�xÿ 1�p ; r � 4ajBj���������������������

�1ÿ b2�`�
q ; x! 1�;

r � bKII�2p�1ÿ x��1=2

; x! 1ÿ; jxÿ 1j � `�

`� � 4 exp
h
ÿ p

2

�
� arg B

�
aÿ1
i
:

�53�

If we now follow the same procedure that we used in Section 3.1 to relate rn �n � 1; 2; . . . ;N� to r0 and to
determine the distributions rc�x� and w(x) namely, that both B1 (i.e. KI) and B2 vanish, we would violate the
restrictions (14). For example, if we chose N� 2, we would ®nd that w(x) becomes negative well away from
the tips. Moreover, this absurd feature of the solution would not disappear even when a! 0. This will be
demonstrated below in Sections 3.2.2. We shall therefore take an alternative approach and eliminate only
the principal stress intensity factor KI (i.e. B1). This will mean that there will be a small zone near each tip of
the weak zone where the faces will overlap due to the oscillatory nature of the singularity. We will however
estimate the size of these overlapping zones and show that it is negligibly small in comparison with the size
of the weak zone.

3.2.1. N� 1
By requiring that B1� 0 (i.e. KI� 0) in Eq. (52), we have E1 � E3 � 0. From Eq. (25), it follows that

r1 � 2r0

1ÿ 4a2
� 2r0�1� 4a2�: �54�

The expressions for E� and E�� Eq. (30) then become

E� � 2r0�1� 4a2�t
����������
1ÿ t
p

; E�� � 4iar0�t ÿ 1
3
�: �55�
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The integral in Eq. (29) is now evaluated by applying the mean value theorem to the weakly variable
function a ln�1� x� in the range of integration, and so giving

w�t� � 2
3
br0�1ÿ b2�1=2�1� 4a2��fcos g�t� � 2

3
a sin g�t�gt3=2 � 2af3n�t� ÿ sinÿ1t

1=2gt1=2

sin f �t�� �O�a2�;
�56�

where

g�t� � a ln
t
t0

; f �t� � a ln
1� x
1ÿ x

� �
; x �

������������
1ÿ t2
p

;

n�t� �
Z t

0

�����������
y

1ÿ y

r
dy �

���������������
t�1ÿ t�

p
ÿ sinÿ1

��
t
p �

�57�

Note that n�t� � t
3=2

, as t! 0�. t0 results from the application of the mean value theorem to the integrated
ln�1� x�2 so that t0 � 4, t! 0 and t0 � e; t � O�1�:

The cohesive stress distribution is given by Eq. (1)

rc�x� � r� � r1x2 � r1 ÿ r0�1ÿ 2�1� 4a2�x2� �O�a4�� �58�
The relative vertical separation of the weak zone faces is given by Eq. (56) in terms of the products of power
and trigonometric functions. It should be noted that the main term in Eq. (56) is proportional to
t3=2 � �1ÿ x2�3=2

, as in the corresponding case of Section 3.1.2, when a� 0. However, it is necessary to
check that the roots of the equation cos a ln�t=t0�� � � 0; as well as that of sin �a ln�t=t0�� less than t� 1, lie
as close to the tips of the weak zone as possible. The ®rst root is less than 10ÿ3 and the subsequent roots are
even smaller. Thus, the oscillations of the faces are con®ned to negligibly small regions of the tips and for all
practical purposes can be ignored.

Away from the tips (mathematically at distances t�O(1)), f(t)�O(a), so that sine functions are mul-
tiplied by terms of O(a2) without large factors and can therefore be neglected. On the contrary,
cos g�t� � 1�O�a2�, so that Eq. (56) reduces to

w�t� � 2
3
br0�1ÿ b2�1=2�1� 4a2�t3=2 �O�a2�; �59�

which is the same as for the case of b� a� 0 in Section 3.1.2 (35), apart from the factor

�������������
1ÿ b2

q
and the

small term �1� 4a2�. Thus, the conclusions of Section 3.1.2 remain in force. In particular, the distributions
of rc�x� and w(x) would be identical to that shown in Fig. 2(a), but with a di�erent vertical scale for rc (x).
It would be multiplied by the small term �1� 4a2�, and the critical stress rcr would be

rcr � 3

2

wcr

b
�1ÿ b2�ÿ1=2�1� 4a2�ÿ1

: �60�

3.2.2. N� 2
By requiring B1� 0 (i.e. KI� 0) in Eq. (52), we have E1 � E3 � E5 � 0. From Eq. (25), it follows that

r1 � �2� 8a2�r0 ÿ �34ÿ 5
8
a2�r2 �O�a4�: �61�

The expressions for E� and E�� (30) after the elimination of r1 become

E� � xt��2� 8a2�r0 � 3
4
�1ÿ 4

9
a2�r2 ÿ r2t� �O�a4�;

E�� � 2ia�ÿ2
3
r0 ÿ 7

60
r2 � �2r0 � 13

12
r2�t ÿ r2t2� �O�a3�: �62�
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The integrals in Eq. (29) are again evaluated using the mean value theorem to giveZ 1

x
E�tÿ1=2 cos f �x�dx � t3=2 c1

3

�h
ÿ r2

5
t
�

cos g�t� � 2a
c1

9

�
ÿ r2

25

�
sin g�t�

i
; �63�

Z 1

x
E��tÿ1=2 sin f �x�dx � 2a c2 sinÿ1 t1=2

� � c3n�t� ÿ r2f�t�
�

sin f �t�; �64�

where g(t), f(t) and n(t) are de®ned in Eq. (57), and

f�t� �
Z t

0

�����������
y3

1ÿ y

s
dy;

c1 � �2� 8a2�r0 � 3
4

1
ÿ ÿ 4

9
a2
�
r2;

c2 � ÿ2
3
r0 ÿ 7

60
r2; c3 � 2r0 � 13

12
r2:

�65�

Note that f�t� � t
5=2
; t! 0�. The vertical separation of the faces of the weak zone can now be written as:

w�t� � b�1ÿ b2�1=2 t
3=2 c1

3

�nh
ÿ r2

5
t
�

cos g�t� � 2a
c1

9

�
ÿ r2

25

�
sin g�t�

o
� 2a c2 sinÿ1 t1=2

n
� c3n�t� ÿ r2f�t�

o
sin f �t�

i
�O�a2�: �66�

As in the case of N� 2, b � 0 (Section 3.1.3), the expression for w(t) contains terms of di�erent orders in t.
This has implications for the solution as t! 0. Note ®rst the existence of the singular term sinÿ1 t1=2, t! 0,
but as it is multiplied by a factor O(a), it disappears as a! 0. For ®nite a, the singular term makes a
signi®cant contribution in a very small region near t� 0 (x� 1), where the contribution of the term
f �t� � a ln �1� x2=t� is pronounced, i.e. in the region 0 < t 6 10ÿ3. When t > e � 10ÿ2, the function a
sin f(t) is of the order O(a2), and can therefore be neglected.

On the contrary, if one tried to suppress the singularity, as mentioned above, by imposing the condition
B2� 0 (i.e. KII� 0), it would mean that c2 would have to be equated to zero. Then from Eqs. (65) and (61),
r2 and r1 could be expressed via r0 as follows:

r2 � ÿ40
7
r0; r1 � 44

7

ÿ ÿ 32
21
a2
�
r0: �67�

The main (®rst) term in formula (66) for w(x) would now be multiplied by the factor �x2 ÿ 1
3
ÿ 26

9
a2�. Bearing

in mind, the range of variation of a (48), the term 26
9
a2 would range over 0 6 26

9
a2 < 0:087; whence it follows

that at x � x� 2�0; 1��x� �
���
3
p

=3 � 0:57�, the vertical separation w(x) of the faces of the weak zone would
change sign, thus violating the condition w�x�P 0; jxj 6 1 far from the tips. It was for this reason that we
adopted the alternative approach and allowed the faces to wrinkle in very small near-tip regions
0 < t < 10ÿ3, as shown above. In these regions, the microstructure of the material begins to play a sig-
ni®cant role.

We have demonstrated above that most terms in Eq. (65) are of the order O(a2) in the range
e < t 6 1 �e � 10ÿ2�; including the term cosg�t� � 1�O�a2�. Expression (66) can therefore be written as

w�t� � b
3
�1ÿ b2�1=2t3=2 c1

ÿ ÿ 3
5
r2t
��O�a2�; 0 < e < t < 1: �68�

The corresponding cohesive force distribution over the percursive crack is

rc�x� � r� � r1x2 � r2x4: �69�
By requiring that w�t� > 0; e < t 6 1, and rc�x� > 0; 0 < x 6 1; and by assuming r2 � ÿdr0, we can solve
the inequalities w(t) > 0 and rc�x� > 0 and obtain
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0 < d 6 8
3

1
ÿ � 40

9
a2
��O�a4�: �70�

At the upper limit of d � 8
3
�1� 40

9
a2� �O�a4�; the coe�cient c1 in Eq. (68) vanishes, as can be con®rmed

from Eq. (65). Thus, the expression for w(t) reduces to

w�t� � 8
15

b�1ÿ b2�1=2
1
ÿ � 40

9
a2
�
r0t5=2 �O�a2�; �71�

where we have retained the term of O(a2) in the parenthesis because it is multiplied by a large factor.
When b, a! 0, expression (71) coincides with the case b� 0, N� 2 studied in Section 3.1.2 (see ex-

pression (45)).
The cohesive force distribution corresponding to Eq. (71) is

rc�x� � r� � 8
3
r0 1
ÿ � 40

9
a2
�
x2 3

2

ÿ ÿ 2a2 ÿ x
��O�a4�: �72�

As before, both distributions (71) and (72) depend on one free parameter r0; 0 6 r0 6 rcr; which can be
de®ned in terms of rcr (or wcr) at the instant of the formation of a crack from the adhesively-bonded weak
zone when r0� r1 � rcr, where

rcr � �1ÿ b2�ÿ1=2
1
ÿ � 40

9
a2
�ÿ1 15wcr

8b
� �73�

As in Section 3.1.2, rc(x) according to Eq. (72) does not vary monotonically. It increases ®rst from r� up to
its maximum value rc�xm� � r� � 3

2
r0�1� 16

9
a2�, where x2

m � 3
4
ÿ a2�xm � 0:86�; and then decreases reaching

the value rc�1� � r� � 3
4
r0�1� 4

9
a2� at the tip of the weak zone. Again, the distribution of rc�x� and w(x)

would be similar to those shown in Fig. 2(b), apart from a slight change in the vertical scale of rc�x� and the
de®nition of rcr which now includes b and a (73), besides wcr and b.

4. Discussion and conclusions

The conditions under which an adhesively bonded weak zone along the interface of two dissimilar elastic
half planes can become the nucleus of a potential crack are analysed. Without specifying the physical origin
of the adhesive forces other than assuming that they can be expressed in a power series, the conditions
under which an initially closed interfacial weak zone will open to the extent that the adhesive forces can no
longer counteract the remotely applied tensile force are examined. It is found that, when the adhesive force
is continuously, but non-uniformly distributed over the weak zone, the latter will become the nucleus of
a potential crack when the applied tensile stress r1 reaches the limiting value rcr. rcr is related to the
maximum separation wcr that the faces of the weak zone can tolerate before they begin to lose their adhesive
strength and the Dundurs parameters a, b. The criterion for the transformation of an adhesively bonded
interfacial weak zone into a crack under a remotely applied tensile stress r1 may therefore be written as:

r1 � A�rc�x�; `0; b�wcr; �74�
where A is a dimensioned function, determined by the distribution of the adhesive forces over the weak
zone, its length and the elastic mismatch parameter. This criterion for the transition from the precursor
state to a crack plays the same role as the Gri�th/Irwin criterion for the growth of a traction-free crack.

The transformation of a weak zone into a crack breaks the continuity of the medium which can have
highly undesirable consequences. For example, highly pure superstrength materials can suddenly lose
strength. Composite superconductors, in which such a transformation would be accompanied by irre-
versible thermal processes, would lose superconductivity. Healed cracks (i.e. weak zones) in glaciers and
EarthÕs crust could lead to sudden and catastrophic release of energy.
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